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Using the command line interface

● Instead of using Graphical interface, one often resort to command line 
interfaces when needed

○ Operating systems provide a set of tools that is more powerful than GUI tools
○ For development, CLI interfaces are easier to be programmed and maintained

● Shell language: POSIX compatible systems (Linux, MacOS, Linux, etc) 
include their own implementation of shell languages that are similar

● Cheat sheet: https://github.com/RehanSaeed/Bash-Cheat-Sheet
● Basic usage: command argument1 argument2 …..

○ find . -type f 
● Pipeline: command1 | command2 | command3…

○  pgrep -f "train.py" | xargs kill

https://github.com/RehanSaeed/Bash-Cheat-Sheet


Find all pids for process 
matches keyword “train.py” 
and then kill them all: 

pgrep -f "train.py" | xargs kill

(?) How about

Find . -type f –name ‘*.py’ | xargs rm

(Don’t try if you do not understand)



 Intro to Python



Python programming language

● The current dominant programming language for machine learning
● Dynamically typed and garbage collected
● Advantage:

○ Usually used as a glue language for calling various libraries written in more “low level” language, 
e.g., C++.

○ Flexible and suitable for fast experimenting
○ Large community base
○ Easy to install and manage packages via the built-in package manager, i.e., PIP 

● Disadvantages
○ Slow performance
○ Currently, threads can not be executed on multiple cores in parallel: still more than 5 years to go to 

remove the global interpreter lock (GIL). 
○ Weak and optional typing system makes it prone to bugs easily avoidable by languages like C++.

● The official tutorial: https://docs.python.org/3/tutorial/index.html

https://docs.python.org/3/tutorial/index.html


Basic Python Code Structure
Package Import

Indentation to indicate 
the code block level 

recommended to use 4 
spaces (PEP 8) or 2 
spaces(GOOGLE), 
equivalent of {} in 
C/C++ like language

Function declaration

Multi-line comment

Single line comment

Iterator Style For loop:
Iterate over elements in 
a iterable object

range(5) is  generator



Basic Python Code Structure: Classes

Constructor

Names like 
“__init__” are 
special names 
provided by 
python. 

Reference to the 
invoking instance 
of the class

‘__init__’ called



Python Control flows: if

https://docs.python.org/3.10/tutorial/controlflow.html



Python Control flows: for loop

https://docs.python.org/3.10/tutorial/controlflow.html



Python Control flows: while loop

https://docs.python.org/3.10/tutorial/introduction.html#first-steps
-towards-programming



Python: built-in types

● Basic types: bool (True, False), int (0,1,2), float (3.5,4.6), complex (5+4j), string(“hi”)
● List: l = [1,2,3,4,5]:

○ len(l)                # 5
○ l[2] 
○ l.append(7)
○ l[:2]+ l[-2:]         # [1,2,4,5]

● Set: s = [‘apple’, ‘pear’, ‘orange’]
○ len(s)                # 3
○ ‘apple’ in s        # True
○ s.add(‘grape’)

● Dict: d=[‘apple’: 1, ‘pear’: 2, ‘orange’: 3]
○ d[‘pear’]            # 2
○ d[‘grape’] =  7   # [‘apple’: 1, ‘pear’: 2, ‘orange’: 3, ‘grape’:7]

● Other types:  https://docs.python.org/3/library/stdtypes.html

https://docs.python.org/3/library/stdtypes.html


Python: typing hint

Type annotations can be added to enable static type checker, (more types are in package typing).

No error when executed:

But with a static checker, e.g. mypy:



Resources for learning python

● The official tutorial:
○ https://docs.python.org/3/tutorial/index.html

● W3C learning by examples:
○ https://www.w3schools.com/python/

● Coursera python courses
○ https://www.coursera.org/search?query=python&

● The Hitchhiler’s Guide to Python
○ https://docs.python-guide.org/

● Style Guide
○ PEP 8: https://peps.python.org/pep-0008/
○ GOOGLE: https://google.github.io/styleguide/pyguide.html

https://docs.python.org/3/tutorial/index.html
https://www.w3schools.com/python/
https://www.coursera.org/search?query=python&
https://docs.python-guide.org/
https://peps.python.org/pep-0008/
https://google.github.io/styleguide/pyguide.html


Development Environment



Package manager

● Linux/OSX package managers
○ Depending on specific linux distributions: APT/DPKG (Debian, Ubuntu, Mint), YUM/RPM(Redhat/Fedora), Pacman(Arch), 

Zypper(openSUSE), Portage (Gentoo)
○ Homebrew(MacOS)

● PIP
○ Python package management tool
○ Packages can be built into wheels and published on https://pypi.org/ and then the package can be directly installed via 

■ pip3 install PACKAGENAME

○ See https://packaging.python.org/en/latest/flow/ on how to package and distribute your python project.
● Anaconda

○ A proprietary package management tool that provides an easy-to-use integration of virtual environment and package 
management.

○ One can create several environment installed with different set of packages under different versions.
○ Not only for python packages
○ Can be used together with PIP in the conda virtual environment
○ Cheatsheet: 

https://docs.conda.io/projects/conda/en/4.6.0/_downloads/52a95608c49671267e40c689e0bc00ca/conda-cheatsheet.pdf

When you need to install something, first try to install via your package manager.

https://pypi.org/
https://packaging.python.org/en/latest/flow/
https://docs.conda.io/projects/conda/en/4.6.0/_downloads/52a95608c49671267e40c689e0bc00ca/conda-cheatsheet.pdf


Development environments

● VIM
○ Simple, fast and reliable
○ Available anywhere for linux based 

system
○ Powerful plugin system
○ High learning curve

● Visual studio code
○ Powerful plugin system
○ Integrated feature for performing 

development on a remote machine
○ Integrated version controlling



Jupyter Notebook

● Web based Interactive 
notebook

● Good for simple experiments 
and documenting stuffs that 
require some coding example/ 
outputs from running. 

● Run locally or remote from a 
server

● Frequently seen in code repos 
as the format of examples



Version Control

● Keep track of changes of your codes
● A necessary for doing real programing
● A lot of options: Git/Mercurial/SVN 
● Git: the most popular among individuals, 

○ Good resource to learn
■ Tutorial videos: https://git-scm.com/videos
■ Visualized learning platform: https://learngitbranching.js.org/ 

○ Code hosting
■ github, bitbucket, gitlab, etc.

https://git-scm.com/videos


LLM based Tools

● E.g., ChatGPT/Copilot
● Example usage

○ Help with boring tasks
○ Generate Unit tests
○ Help write Commit Messages/ 

documents/Reports 
● Use with caution

○ Fake information
○ Misunderstanding
○ Potential (?) plagiarism



Python Package and Frameworks



Scientific computing libraries

Numpy: numerical computation library

Scipy: scientific computing library built on numpy, which covers python counterparts to 
Matlab functionalities: integration, optimization, fft, signal processing etc. 

Scikit-learn: A (traditional) Machine learning library which allows you to perform 
non-deep-learning based regression, classification, etc.

Matplotlib/Seaborn: data visualization 

You will get familiar with these tools throughout the progress of programming assignment



Deep learning frameworks

● What they are doing?
○ Numerical Algebra  
○ automatic differentiation (aka. backpropagation)
○ Modules for implementing commonly used deep learning practices

● Current dominance in research: Pytorch

From: https://paperswithcode.com/trends



Popular Deep learning frameworks
● Pytorch (Meta/ Pytorch Foundation)

○ Dynamic Computational Graph
○ Largest amount of Machine Learning project code repos
○ Just-in-time compiler
○ TorchScript Language for higher performance and generic deployment

● JAX (Google)
○ Similar to Pytorch
○ Created by original authors of the opensource Autograd package for numpy, but this time it is 

sponsored and maintained by Google  
○ Most advanced Automatic differentiation features (fast high-order derivatives, automatic 

vectorization based on function transforms)
○ Have better support on Google’s TPU as a Google product

● Tensorflow (Google)
○ One of the early frameworks
○ Static computational graph: declare the whole computational process and then feed in the data
○ Current version supports both static and dynamic computational graph, e.g., GradientTape
○ Have better support on Google’s TPU as a Google product

● MindSpore (Huawei)
○ More similar to tensorflow: support both static/dynamic computational graphs
○ Out of box training utilities, Automatic Parallelized Training



Higher level training frameworks for DL frameworks

● Deep learning frameworks typically require you to write the actual logics for 
training, which typically include:

○ data loading, model initialization/restoration, looping over the dataset,  backpropagating and 
updating the model at certain point, parallelization, and logging some metrics during training.

● Instead of writing training logics from scratch, one can use some frameworks 
that directly provides certain abstractions:

○ Pytorch Lightning for pytorch
○ Keras for tensorflow



Training Logging

● Keep track of any 
metrics (loss, accuracy, 
etc.) during training

● E.g. Tensorboard

https://www.tensorflow.org/tensorboard



Model Versioning

● Keep track of 
your codes 
together with 
trained 
models

● E.g., MLFlow

https://towardsdatascience.com/mlflow-a-primer-6dfe6be48353



Model Deployment

● Generic Deployment: let your model run on different devices
○ ONNX: Open Neural Network Exchange

■ The open standard for representing the machine learning model
■ Can be exported from a variety of Deep learning frameworks
■ Generic tools for deployment, targeting e.g., mobile/DSP board/MicroController



Model deployment

● Model Serving: let you create API endpoints for calling your model from 
remote locations

○ TorchServe
○ TensorFlow serving
○ Huggingface
○ And others


