
Tools For Machine Learning
An overview

Yujia Yan
ECE 208/408

Today’s focus

Typical Machine Learning System Life Cycle

Problem Definition

Data Collection, Annotation
And Preprocessing

Human labor
Web crawler

Annotation tools
Large language models

Model Development,
Training, and Evaluation
Programming Language
Coding environment
Version control
Logging/Progress
monitoring

Document/
Maintain/
Monitoring
Business metrics
Issue tracking
Document creation

Model Deployment
Serving
Model compiling
Model serving

05

01

02 03

04

Using the command line interface

● Instead of using Graphical interface, one often resort to command line
interfaces when needed

○ Operating systems provide a set of tools that is more powerful than GUI tools
○ For development, CLI interfaces are easier to be programmed and maintained

● Shell language: POSIX compatible systems (Linux, MacOS, Linux, etc)
include their own implementation of shell languages that are similar

● Cheat sheet: https://github.com/RehanSaeed/Bash-Cheat-Sheet
● Basic usage: command argument1 argument2 …..

○ find . -type f
● Pipeline: command1 | command2 | command3…

○ pgrep -f "train.py" | xargs kill

https://github.com/RehanSaeed/Bash-Cheat-Sheet

Find all pids for process
matches keyword “train.py”
and then kill them all:

pgrep -f "train.py" | xargs kill

(?) How about

Find . -type f –name ‘*.py’ | xargs rm

(Don’t try if you do not understand)

 Intro to Python

Python programming language

● The current dominant programming language for machine learning
● Dynamically typed and garbage collected
● Advantage:

○ Usually used as a glue language for calling various libraries written in more “low level” language,
e.g., C++.

○ Flexible and suitable for fast experimenting
○ Large community base
○ Easy to install and manage packages via the built-in package manager, i.e., PIP

● Disadvantages
○ Slow performance
○ Currently, threads can not be executed on multiple cores in parallel: still more than 5 years to go to

remove the global interpreter lock (GIL).
○ Weak and optional typing system makes it prone to bugs easily avoidable by languages like C++.

● The official tutorial: https://docs.python.org/3/tutorial/index.html

https://docs.python.org/3/tutorial/index.html

Basic Python Code Structure
Package Import

Indentation to indicate
the code block level

recommended to use 4
spaces (PEP 8) or 2
spaces(GOOGLE),
equivalent of {} in
C/C++ like language

Function declaration

Multi-line comment

Single line comment

Iterator Style For loop:
Iterate over elements in
a iterable object

range(5) is generator

Basic Python Code Structure: Classes

Constructor

Names like
“__init__” are
special names
provided by
python.

Reference to the
invoking instance
of the class

‘__init__’ called

Python Control flows: if

https://docs.python.org/3.10/tutorial/controlflow.html

Python Control flows: for loop

https://docs.python.org/3.10/tutorial/controlflow.html

Python Control flows: while loop

https://docs.python.org/3.10/tutorial/introduction.html#first-steps
-towards-programming

Python: built-in types

● Basic types: bool (True, False), int (0,1,2), float (3.5,4.6), complex (5+4j), string(“hi”)
● List: l = [1,2,3,4,5]:

○ len(l) # 5
○ l[2]
○ l.append(7)
○ l[:2]+ l[-2:] # [1,2,4,5]

● Set: s = [‘apple’, ‘pear’, ‘orange’]
○ len(s) # 3
○ ‘apple’ in s # True
○ s.add(‘grape’)

● Dict: d=[‘apple’: 1, ‘pear’: 2, ‘orange’: 3]
○ d[‘pear’] # 2
○ d[‘grape’] = 7 # [‘apple’: 1, ‘pear’: 2, ‘orange’: 3, ‘grape’:7]

● Other types: https://docs.python.org/3/library/stdtypes.html

https://docs.python.org/3/library/stdtypes.html

Python: typing hint

Type annotations can be added to enable static type checker, (more types are in package typing).

No error when executed:

But with a static checker, e.g. mypy:

Resources for learning python

● The official tutorial:
○ https://docs.python.org/3/tutorial/index.html

● W3C learning by examples:
○ https://www.w3schools.com/python/

● Coursera python courses
○ https://www.coursera.org/search?query=python&

● The Hitchhiler’s Guide to Python
○ https://docs.python-guide.org/

● Style Guide
○ PEP 8: https://peps.python.org/pep-0008/
○ GOOGLE: https://google.github.io/styleguide/pyguide.html

https://docs.python.org/3/tutorial/index.html
https://www.w3schools.com/python/
https://www.coursera.org/search?query=python&
https://docs.python-guide.org/
https://peps.python.org/pep-0008/
https://google.github.io/styleguide/pyguide.html

Development Environment

Package manager

● Linux/OSX package managers
○ Depending on specific linux distributions: APT/DPKG (Debian, Ubuntu, Mint), YUM/RPM(Redhat/Fedora), Pacman(Arch),

Zypper(openSUSE), Portage (Gentoo)
○ Homebrew(MacOS)

● PIP
○ Python package management tool
○ Packages can be built into wheels and published on https://pypi.org/ and then the package can be directly installed via

■ pip3 install PACKAGENAME

○ See https://packaging.python.org/en/latest/flow/ on how to package and distribute your python project.
● Anaconda

○ A proprietary package management tool that provides an easy-to-use integration of virtual environment and package
management.

○ One can create several environment installed with different set of packages under different versions.
○ Not only for python packages
○ Can be used together with PIP in the conda virtual environment
○ Cheatsheet:

https://docs.conda.io/projects/conda/en/4.6.0/_downloads/52a95608c49671267e40c689e0bc00ca/conda-cheatsheet.pdf

When you need to install something, first try to install via your package manager.

https://pypi.org/
https://packaging.python.org/en/latest/flow/
https://docs.conda.io/projects/conda/en/4.6.0/_downloads/52a95608c49671267e40c689e0bc00ca/conda-cheatsheet.pdf

Development environments

● VIM
○ Simple, fast and reliable
○ Available anywhere for linux based

system
○ Powerful plugin system
○ High learning curve

● Visual studio code
○ Powerful plugin system
○ Integrated feature for performing

development on a remote machine
○ Integrated version controlling

Jupyter Notebook

● Web based Interactive
notebook

● Good for simple experiments
and documenting stuffs that
require some coding example/
outputs from running.

● Run locally or remote from a
server

● Frequently seen in code repos
as the format of examples

Version Control

● Keep track of changes of your codes
● A necessary for doing real programing
● A lot of options: Git/Mercurial/SVN
● Git: the most popular among individuals,

○ Good resource to learn
■ Tutorial videos: https://git-scm.com/videos
■ Visualized learning platform: https://learngitbranching.js.org/

○ Code hosting
■ github, bitbucket, gitlab, etc.

https://git-scm.com/videos

LLM based Tools

● E.g., ChatGPT/Copilot
● Example usage

○ Help with boring tasks
○ Generate Unit tests
○ Help write Commit Messages/

documents/Reports
● Use with caution

○ Fake information
○ Misunderstanding
○ Potential (?) plagiarism

Python Package and Frameworks

Scientific computing libraries

Numpy: numerical computation library

Scipy: scientific computing library built on numpy, which covers python counterparts to
Matlab functionalities: integration, optimization, fft, signal processing etc.

Scikit-learn: A (traditional) Machine learning library which allows you to perform
non-deep-learning based regression, classification, etc.

Matplotlib/Seaborn: data visualization

You will get familiar with these tools throughout the progress of programming assignment

Deep learning frameworks

● What they are doing?
○ Numerical Algebra
○ automatic differentiation (aka. backpropagation)
○ Modules for implementing commonly used deep learning practices

● Current dominance in research: Pytorch

From: https://paperswithcode.com/trends

Popular Deep learning frameworks
● Pytorch (Meta/ Pytorch Foundation)

○ Dynamic Computational Graph
○ Largest amount of Machine Learning project code repos
○ Just-in-time compiler
○ TorchScript Language for higher performance and generic deployment

● JAX (Google)
○ Similar to Pytorch
○ Created by original authors of the opensource Autograd package for numpy, but this time it is

sponsored and maintained by Google
○ Most advanced Automatic differentiation features (fast high-order derivatives, automatic

vectorization based on function transforms)
○ Have better support on Google’s TPU as a Google product

● Tensorflow (Google)
○ One of the early frameworks
○ Static computational graph: declare the whole computational process and then feed in the data
○ Current version supports both static and dynamic computational graph, e.g., GradientTape
○ Have better support on Google’s TPU as a Google product

● MindSpore (Huawei)
○ More similar to tensorflow: support both static/dynamic computational graphs
○ Out of box training utilities, Automatic Parallelized Training

Higher level training frameworks for DL frameworks

● Deep learning frameworks typically require you to write the actual logics for
training, which typically include:

○ data loading, model initialization/restoration, looping over the dataset, backpropagating and
updating the model at certain point, parallelization, and logging some metrics during training.

● Instead of writing training logics from scratch, one can use some frameworks
that directly provides certain abstractions:

○ Pytorch Lightning for pytorch
○ Keras for tensorflow

Training Logging

● Keep track of any
metrics (loss, accuracy,
etc.) during training

● E.g. Tensorboard

https://www.tensorflow.org/tensorboard

Model Versioning

● Keep track of
your codes
together with
trained
models

● E.g., MLFlow

https://towardsdatascience.com/mlflow-a-primer-6dfe6be48353

Model Deployment

● Generic Deployment: let your model run on different devices
○ ONNX: Open Neural Network Exchange

■ The open standard for representing the machine learning model
■ Can be exported from a variety of Deep learning frameworks
■ Generic tools for deployment, targeting e.g., mobile/DSP board/MicroController

Model deployment

● Model Serving: let you create API endpoints for calling your model from
remote locations

○ TorchServe
○ TensorFlow serving
○ Huggingface
○ And others

